Extracting More Data from LiDAR in Forested Areas by Analyzing Waveform Shape
نویسندگان
چکیده
Light Detection And Ranging (LiDAR) in forested areas is used for constructing Digital Terrain Models (DTMs), estimating biomass carbon and timber volume and estimating foliage distribution as an indicator of tree growth and health. All of these purposes are hindered by the inability to distinguish the source of returns as foliage, stems, understorey and the ground except by their relative positions. The ability to separate these returns would improve all analyses significantly. Furthermore, waveform metrics providing information on foliage density could improve forest health and growth estimates. In this study, the potential to use waveform LiDAR was investigated. Aerial waveform LiDAR data were acquired for a New Zealand radiata pine plantation forest, and Leaf Area Density (LAD) was measured in the field. Waveform peaks with a good signal-to-noise ratio were analyzed and each described with a Gaussian peak height, half-height width, and an exponential decay constant. All parameters varied substantially across all surface types, ruling out the potential to determine source characteristics for individual returns, particularly those with a lower signal-to-noise ratio. However, pulses on the ground on average had a greater intensity, decay constant and a narrower peak than returns from coniferous foliage. When spatially averaged, canopy foliage density (measured as LAD) varied significantly, and was found to be most highly correlated with the volume-average exponential decay rate. A simple model based on the Beer-Lambert law is proposed to explain this relationship, and proposes waveform decay rates as a new metric that is less OPEN ACCESS Remote Sens. 2012, 4 683 affected by shadowing than intensity-based metrics. This correlation began to fail when peaks with poorer curve fits were included.
منابع مشابه
Forest Characteristics and Effects on LiDAR Waveforms Modeling and Simulation
LiDAR (Light Detection And Ranging) remote sensing has been used to extract surface information as it can acquire highly accurate object shape characteristics using geo-registered 3D-points, and therefore, proven to be satisfactory for many applications, such as high-resolution elevation model generation, 3-D city mapping, vegetation structure estimation, etc. Large footprint LiDAR especially, ...
متن کاملBuilding Footprints Extraction of Dense Residential Areas from LiDAR data
Extracting individual buildings and determining their footprints have been extensively studied towards 3D Building reconstruction. Though most previous works show promising results, it is yet a nontrivial task, especially in dense residential areas. This paper discusses a methodology for resolving this issue. The proposed approach starts with separating ground and nonground LiDAR points. In the...
متن کاملProcessing Full-waveform Lidar Data: Modelling Raw Signals
Unlike airborne multi-echo laser scanner systems, full-waveform systems are able to digitize and record the entire backscattered signal of each laser pulse. It has been demonstrated that decomposing the return waveforms into a mixture of Gaussian components was suitable. In this paper, we focus on the improvement of peak detection and of raw signal modelling. Refined peak detection greatly incr...
متن کاملPresenting a Morphological Based Approach for Filtering The Point Cloud to Extract the Digital Terrain Model
The Digital terrain model is an important geospatial product used as the basis of many practical projects related to geospatial information. Nowadays, a dense point cloud can be generated using the LiDAR data. Actually, the acquired point cloud of the LiDAR, presents a digital surface model that contains ground and non-ground objects. The purpose of this paper is to present a new approach of ex...
متن کاملFusion of high spatial resolution WorldView-2 imagery and LiDAR pseudo-waveform for object-based image analysis
High spatial resolution (HSR) imagery and high density LiDAR data provide complementary horizontal and vertical information. Therefore, many studies have focused on fusing the two for mapping geographic features. It has been demonstrated that the synergetic use of LiDAR and HSR imagery greatly improves classification accuracy. This is especially true with waveform LiDAR data since they provide ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 4 شماره
صفحات -
تاریخ انتشار 2012